Analysis of $K^0_s K^0_s$ and $\pi^+\pi^-\pi^0$ final states in two photon collisions at LEP

I. Vorobiev^a, on behalf of the L3 Collaboration

Carnegie Mellon University, Pittsburgh, PA 15213

Received: 31 October 2003 / Accepted: 9 January 2004 / Published Online: 17 February 2004 – © Springer-Verlag / Società Italiana di Fisica 2004

Abstract. The $K_s^0 K_s^0$ and $\pi^+ \pi^- \pi^0$ final states in two-photon collisions are studied with the L3 detector at LEP. A full energy dependent partial wave analysis demonstrates that the two-photon mass spectra are dominated by the formation of tensor mesons. Their masses, widths and two-photon partial widths are determined.

1 Introduction

An important step in the development of a nonperturbative approach in QCD at low and intermediate energies is an identification and classification of the strongly interacting particles - hadrons. An important tool for the investigation of hadronic states is provided by two-photon interactions.

Exclusive states are produced in two-photon collisions in clean conditions and with restricted quantum numbers. In the reaction

$$e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-R$$

R denotes a neutral unflavoured meson with positive chagre conjugation parity C=+1. Events, studied in this work, have small 4-momentum transfered squared ($Q^2\approx$ 0), the photons are quasi-real, odd spin states are forbidden. For $\gamma\gamma \rightarrow K^0_s K^0_s$ allowed states are $J^{PC}=0^{++},$ $2^{++},$ $4^{++},$... $(2n)^{++}.$ In $\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$ the 0^+ state is excluded by parity conservation, so that only isovector $q\bar{q}$ states can be produced ($I^G=1^-$). Allowed states are $J^{PC}=0^{-+},2^{++},2^{-+},\ldots$.

The reactions are investigated with the L3 detector [1] at LEP in untagged two-photon events (final state electron and positron are not detected). Data are analysed with full energy dependent Partial Wave Analysis (PWA), based on the approach of [2,3,4]. In case of the $K_s^0 K_s^0$ channel an analysis is also done based on the SU(3) nonet classification, and SU(3) relations are imposed on parameters.

$$2~\gamma\gamma
ightarrow K^0_s K^0_s$$

The $K_s^0 K_s^0$ final state is analysed at center of mass energies from 91 to 209 GeV and with total integrated luminosity

Fig. 1. $K_s^0 K_s^0$ mass distribution. Continuous histogram - fit of data with SU(3) relations imposed

L=806 pb^{-1} (LEPI: \sqrt{s} =91 GeV, L=143 pb⁻¹; LEP II: \sqrt{s} =183-209 GeV, L=663 pb⁻¹).

Events with four charged tracks (two positive and two negative) are selected. Two opposite-pairs form secondary vertices with "invariant" distance from nominal interaction point $d_0 = d \cdot \frac{M_{K_S}}{P_{K_S}} > 1.5$ mm. To select kaon pairs, masses of two K_s^0 candidates, m_{+-} , are required to be inside a circle of 40 MeV radius around the central K_s^0 mass value indicating $K_s^0 K_s^0$ production. The total transverse momentum of all tracks $P_t = |\sum \mathbf{p}_t|$ has to be less than 0.3 GeV (to select an exclusive state). 870 events are selected.

^a Present address: CERN, CH-1211 Geneva 23, Switzerland; e-mail: Igor.Vorobiev@cern.ch

	-					
	First nonet		Second nonet			
	$a_2(1320)$	$f_2(1270)$	$f_2'(1525)$	$a_2(1700)$	$f_2(1560)$	$f_2(1750)$
Mass (MeV)	1304 ± 10	1277 ± 6	1523 ± 5	1730^{*}	1570*	1755 ± 10
Width (MeV)	120 ± 15	195 ± 15	104 ± 10	340^{*}	160*	67 ± 12
$K\bar{K}$ width (MeV)	$7.0^{+2.0}_{-1.5}$	7.5 ± 2	68*	5 ± 3	2 ± 1	23 ± 7
Radius (fm)	0.55^{*}	0.55^{*}	0.5^{*}	0.55^{*}	0.55^{*}	0.5^{*}
Nonet coupling (MeV)	0.8 ± 0.1	0.9 ± 0.1	1.05 ± 0.1	0.38 ± 0.05		
Mixing angle (degrees)	-1 ± 3			-10^{+5}_{-10}		
$\gamma\gamma$ width (KeV)	0.91*	2.55 ± 0.15	0.13 ± 0.03	0.18^{*}	0.5 ± 0.1	0.11 ± 0.04
$\pi\pi$ width (MeV)		148 ± 8	$0.2^{+1.0}_{-0.2}$		30*	1.3 ± 1.0
$\pi\eta$ width (MeV)	18.5 ± 3			9.5 ± 2		
$\eta\eta$ width (MeV)		1.8 ± 0.4	5.0 ± 0.8		1.2 ± 0.3	2.0 ± 0.5

Table 1. Parameters obtained from SU(3) based fit of $K_s^0 K_s^0$ state

* fixed from other data

Figure 1 presents the mass distribution of selected $K_s^0 K_s^0$ – pairs (points), which shows rich resonance structure. The main contribution comes from tensor mesons. Resonances of the first tensor nonet are: $a_2(1320)$ and $f_2(1270)$ (a small signal due to a destructive interference) and $f'_{2}(1525)$, which dominates the spectrum. A signal from $a_0(980)$ is clearly seen near process threshold. Parameters of the scalar amplitudes $(a_0 \text{ and } f_0)$ are fixed (see [5], [6]). Angular distributions show that the 2150 MeV peak is most likely a 4^{++} state. The peak at 1700-1800 MeV (observed in a previous L3 analysis of the $K_s^0 K_s^0$ channel [7,8]) is well described by a tensor meson $f_2(1750)$. At the same time a dip is well reproduced between $f'_2(1525)$ and $f_2(1750)$ due to distructive interference of these states. If, instead, a scalar meson $f_0(1710)$ is introduced, the fit fails to reproduce both the dip and a slope above 1800 MeV. The $f_2(1560)$ and $a_2(1700)$ practically do not contribute to the cross section. Their parameters are fixed, respectively, from Crystal Barrel data [9, 10] and from the L3 analysis of $\pi^+\pi^-\pi^0$ state (see below).

A fit using SU(3) relations gives a very good description of the data (parameters obtained are shown in Table 1). A description of data in the nonet approach has a significant problem if the peak at 1750 MeV is assumed to be a scalar state. On the contrary as a tensor state it fits well into a second tensor nonet together with $f_2(1560)$ and $a_2(1700)$. The parameters, obtained here for $f_2(1750)$, are consistent with the previous L3 measurement [8].

As is seen from Table 1, the masses of the isoscalar tensor states are systematically lower than those of isovector states. This can be an indication of a tensor glueball in mass region 1800-2000 MeV.

 $3\,\gamma\gamma
ightarrow\pi^+\pi^-\pi^0$

 $\pi^+\pi^-\pi^0$ final state is analysed at LEPII energies $\sqrt{s}=183$ - 209 GeV, L=609 pb⁻¹. Events have two tracks of opposite charge, originating from the interaction point, two isolated electromagnetic clusters, forming a π^0 (0.065 <

Fig. 2. Mass distribution of three pions and contribution of different states into cross section

 $m_{\gamma\gamma} < 0.220 \ {\rm GeV})$, and total transverse momentum $P_t = |\sum {\bf p}_t| < 0.1 \ {\rm GeV}$. About 18 thousand events are selected. The mass distribution for three pions is shown in Fig. 2. Possible states are 2^{++} : $a_2(1320), \ a_2(1700), \ a_2(2030); \ 2^{-+}$: $\pi_2(1670); \ 0^{-+}$: π (1300). The distribution is clearly dominated by production of the $a_2(1320)$ state. There is also a pronounced shoulder at masses higher than 1500 MeV. PWA is done in the mass range $1.1 < M(\pi^+\pi^-\pi^0) < 2.2 \ {\rm GeV}.$

The model, used for PWA, supposes a cascade decay

$$\gamma\gamma \to R \to \pi R', \ R' \to \pi \pi.$$

In the $\pi^{\pm}\pi^{0}$ mass spectrum $\rho(770)$ dominates, and $\rho(1450)$ is also seen. In the $\pi^{+}\pi^{-}$ system only *f*-states ($J^{PC} = 0^{++}, 2^{++}, ...$) are possible. $f_{0}(980)$ and $f_{0}(1500)$ give very

Resonance	M (MeV)	$\Gamma({ m MeV})$	$\Gamma_{\gamma\gamma} \operatorname{Br}(3\pi)$
			(KeV)
$a_2(1320)$	$1302\pm3\pm6$	$118\pm 6\pm 10$	0.65 ± 0.05
$a_2(1700)$	$1725 \pm 25 \pm 10$	340 ± 40	$0.37^{+0.12}_{-0.08}$
from [12]	$1752 \pm 21 \pm 4$	150 ± 115	0.29 ± 0.04
$a_2(2030)^*$	2030 ± 20	205 ± 25	0.11 ± 0.04
$\pi(1300)$	1350 ± 40	320 ± 50	≤ 0.8
2^+	1870 ± 60	325 ± 40	0.15 ± 0.03
$\pi_2(1670)^*$	1670	260	≤ 0.1

Table 2. Mass, width and the product of $\Gamma_{\gamma\gamma}$ times Br(3π) for observed resonances

* fixed from other data

small contributions and they are omitted. $f_2(1270)$ produces some signal. A $\pi\pi \to \pi\pi$ S-wave amplitude (from $\pi\pi$ threshold up to 2 GeV) was required. Background is described by a second order polynomial function depending on the 3π mass squared.

To reproduce the data $(3\pi \text{ mass}, 2\pi \text{ masses} \text{ and} all angular distributions})$ three tensor states are needed $a_2(1320)$, $a_2(1700)$ and $a_2(2030)$, a scalar, which can be identified as $\pi(1300)$, and a 2^{-+} state at high 3π masses. Masses and widths for resonances are listed in Table 2.

Tensor mesons are mainly produced from ${}^{5}S_{2}$ twophoton initial state. For $a_{2}(1320)$ the ratio with the ${}^{1}D_{2}$ wave is found to be:

$$\frac{\sigma(\gamma\gamma({}^{5}S_{2}) \to a_{2}(1320))}{\sigma(\gamma\gamma({}^{1}D_{2}) \to a_{2}(1320))} = 8.2 \pm 0.6$$

The corresponding value for the $a_2(1700)$ is 2.5 ± 1.0 . The corresponding ratio of couplings is 0.60 ± 0.20 , in good agreement with expectation [11] 0.54 ± 0.16 for the first recurrence of the $a_2(1320)$. The $a_2(1700)$ state was first observed in the previous L3 analysis [12] of $\pi^+\pi^-\pi^0$ with limited statistics. This state is confirmed by the present full energy analysis, and its parameters are consistent with the previous measurement (see Table 2). The $a_2(1700)$ has a significant branching fraction into $f_2(1270)\pi$:

$$\frac{Br(a_2(1700) \to \rho(770)\pi)}{Br(a_2(1700) \to f_2(1270)\pi)} = 3.4 \pm 0.4$$

At higher 3π mass values a contribution from another isovector tensor state, $a_2(2030)$, is needed. The mass and width of this resonance can not be determined from present analysis, and they are fixed to values given in [13]. The $\pi(1300)$ state, when introduced in the analysis, appreciably improves the likelihood. But this state produces a uniform angular distribution and is similar to background, so only an upper limit is estimated for the $\gamma\gamma$ width of this state. A 2^{-+} signal is found at masses higher than $\pi_2(1670)$. If a mass of 2^{-+} is left free, it always moves to 1850-1900 mass region, giving indication of new 2^{-+} state (see Table 2). For $\pi_2(1670)$ an upper limit on the $\gamma\gamma$ width is defined (parameters of $\pi_2(1670)$ are fixed from [14]).

4 Conclusions

For $\gamma \gamma \to K_s^0 K_s^0$:

- PWA favores a description of the peak at 1750 MeV by a tensor state $f_2(1750)$.
- If nonet relations are applied this state fits naturally into a second tensor nonet together with $f_2(1560)$ and $a_2(1700)$ states.
- The data define very well the mixing angles for two tensor nonets: $(-1^o \pm 3^o)$ for the first and $(-10^{o+5^o}_{-10^o})$ for the second.
- There is an indication for a 4^{++} state: M=(2150 ± 30) MeV, Γ =(50 ± 20) MeV.

For $\gamma \gamma \to \pi^+ \pi^- \pi^0$:

- The characteristics of the dominant $a_2(1320)$ state are found. The measured mass is lower than the world average [14] since in the present fit it is the amplitude pole and not the central value of the mass spectrum.
- A strong signal is observed from the first radial excitation isovector tensor state $a_2(1700)$: M = $1725\pm25\pm10$ MeV, $\Gamma = 340\pm40$ MeV.
- Another isovector state with the mass 2030 MeV is found to be significant.
- There is also a signal from $\pi(1300)$ and an indication for a 2⁻⁺ signal in the region of 1870 MeV.

Acknowledgements. I am very grateful to A.V. Sarantsev for helpful discussions.

References

- L3 Collab., B. Adeva et al.: Nucl. Instr. Meth. A 289, 35 (1990)
- 2. V.V. Anisovich et al.: Phys. Atom. Nucl. 57, 1595 (1994)
- V.V. Anisovich, Y.D. Prokoshkin, and A.V. Sarantsev: Phys. Lett. B 389, 388 (1996), hep-ph/9610414
- 4. A.V. Anisovich et al.: hep-ph/0105330
- 5. A.V. Anisovich et al.: hep-ph/0204330
- V.V. Anisovich and A.V. Sarantsev: Eur. Phys. J. A 16, 229 (2003), hep-ph/0204328
- 7. L3 Collab., M. Acciari et al.: Phys. Lett. B 363, 118 (1995)
- 8. L3 Collab., M. Acciari et al.: Phys. Lett. B 501, 173 (2001)
- Crystal Barrel Collab., V.V. Anisovich et al.: Phys. Lett. B 323, 233 (1994)
- 10. C.A. Backer et al.: Phys. Lett. B 467, 147 (1999)
- A.V. Anisovich, V.V. Anisovich, and V.A. Nikonov: hepph/0108186
- 12. L3 Collab., M. Acciari et al.: Phys. Lett. B 413, 147 (1997)
- 13. A.V. Anisovich et al.: Phys. Lett. B 517, 261 (2001)
- Particle Data Group, K. Hagiwara et al.: Phys. Rev. D 66, 010001 (2002)